Page 2: Stability, Testing, Conclusion
Stability:
Let's talk about stability. Do not trust reviewers that do not fully disclose how they determine that the RAM is stable at a specific speed. At ASE Labs, RAM is only stable if it passes Memtest86+ and a plethora of memory intensive applications for a few hours like mprime and doing continuous compiling of specific programs. Just because the memory POSTs and runs doesn't mean that it is stable. Linux users may find memory errors by having errors in compiling (very common) to errors in tar as well as segfaults. Windows users can expect program faults and BSODs. Memory stability is very important. When we say that a specific specification of RAM is stable, we mean it!
The Ballistix PC3-12800 was perfectly stable at 1.8V running at 1600MHz with timings of 8-8-8-24. The XMP works as expected as well. It sets the FSB to 400MHz and drops the multiplier on the CPU to compensate and makes the RAM run at the rated timings. Now that we know the RAM works as intended, let's see where it goes from there.
Overclocking:
Overclocking is one of those things that just takes time. My time with these modules was fairly interesting. Running 1.8V at the stock timings, I only got to 1660MHz (keeping the 1T command rate). When I pumped the voltage up to 1.9V, the modules still only got as far as 1720MHz. This was really pushing diminishing returns fast so I opted to see how fast I could make the timings at the rated speed and voltage. The fastest timings I achieved were 7-6-7-12 at 1.8V which is very impressive. I've included these results in the testing section below.
Testing:
I want to preface this section by saying how ASE Labs will be doing benchmarks from now on. There will be no synthetic benchmarks at ASE Labs. This means that for fair comparisons, an apples to apples system will need to be made. We will be using tools that anyone will be able to get so anybody can reproduce our results. Current memory tests include compilation of LAME and FFMPEG, encoding in each of those programs, and a round of mprime to round everything out. We will be adding testing as we see fit during future reviews. If you would like to see specific (real world stuff) programs, please send me an email.
Since this is the first DDR3 modules to hit ASE Labs, I thought it would be interesting to see how DDR2 compares against this in real world testing. I will tell you right off the bat that memory is fairly useless to benchmarks in real world apps. This is way those nice "synthetic" benchmarks try to paint a nice picture... unfortunately, just because synthetic benchmarks show a 15% or whatever gain, that doesn't mean anything in real world use. This is why we are only going with things that show a proper usage scenario.
Testing was done with a Core 2 Duo 2.4GHz on an Asus P5E3 Deluxe (review coming soon) for DDR3 and an Asus P5B Deluxe for DDR2. Same specs for both other than the motherboard. The DDR2 was running at DDR2-1066 with timings of 5-5-5-15. Gray denotes DDR2. Light blue is the DDR3 at stock and dark blue is the tight timings with overclocking. The DDR3 was running at 1600MHz.
These three graphs show a very minimal improvement with DDR3. Remember that all tests are timing and that means that lower is better. I will include more tests in the future to show higher differences, but if you look at how the vastly different bandwidth is working in the real world, you see nothing much! We can determine from these results that DDR3 can take over for DDR2, but the timings need to be better. They will soon.
Conclusion:
The Crucial Ballistic PC3-12800 2GB kit retails for a whopping $380. Prices for DDR3 are dropping fairly steadily. The P5E3 that I'm using costs $350 itself. DDR3 is very expensive, but the industry is heading there. I would say wait a month or so and grab these modules when they drop in price. If you absolutely need DDR3, the Crucial Ballistix PC3-12800 should be on the top of your list. I don't envy people that are doing a new build for an Intel computer right now. It is a tough decision to stay with DDR2 or move to DDR3 for future upgradability.
I would like to thank Kelly and Jeremy from Crucial for making this review possible.
Let's talk about stability. Do not trust reviewers that do not fully disclose how they determine that the RAM is stable at a specific speed. At ASE Labs, RAM is only stable if it passes Memtest86+ and a plethora of memory intensive applications for a few hours like mprime and doing continuous compiling of specific programs. Just because the memory POSTs and runs doesn't mean that it is stable. Linux users may find memory errors by having errors in compiling (very common) to errors in tar as well as segfaults. Windows users can expect program faults and BSODs. Memory stability is very important. When we say that a specific specification of RAM is stable, we mean it!
The Ballistix PC3-12800 was perfectly stable at 1.8V running at 1600MHz with timings of 8-8-8-24. The XMP works as expected as well. It sets the FSB to 400MHz and drops the multiplier on the CPU to compensate and makes the RAM run at the rated timings. Now that we know the RAM works as intended, let's see where it goes from there.
Overclocking:
Overclocking is one of those things that just takes time. My time with these modules was fairly interesting. Running 1.8V at the stock timings, I only got to 1660MHz (keeping the 1T command rate). When I pumped the voltage up to 1.9V, the modules still only got as far as 1720MHz. This was really pushing diminishing returns fast so I opted to see how fast I could make the timings at the rated speed and voltage. The fastest timings I achieved were 7-6-7-12 at 1.8V which is very impressive. I've included these results in the testing section below.
Testing:
I want to preface this section by saying how ASE Labs will be doing benchmarks from now on. There will be no synthetic benchmarks at ASE Labs. This means that for fair comparisons, an apples to apples system will need to be made. We will be using tools that anyone will be able to get so anybody can reproduce our results. Current memory tests include compilation of LAME and FFMPEG, encoding in each of those programs, and a round of mprime to round everything out. We will be adding testing as we see fit during future reviews. If you would like to see specific (real world stuff) programs, please send me an email.
Since this is the first DDR3 modules to hit ASE Labs, I thought it would be interesting to see how DDR2 compares against this in real world testing. I will tell you right off the bat that memory is fairly useless to benchmarks in real world apps. This is way those nice "synthetic" benchmarks try to paint a nice picture... unfortunately, just because synthetic benchmarks show a 15% or whatever gain, that doesn't mean anything in real world use. This is why we are only going with things that show a proper usage scenario.
Testing was done with a Core 2 Duo 2.4GHz on an Asus P5E3 Deluxe (review coming soon) for DDR3 and an Asus P5B Deluxe for DDR2. Same specs for both other than the motherboard. The DDR2 was running at DDR2-1066 with timings of 5-5-5-15. Gray denotes DDR2. Light blue is the DDR3 at stock and dark blue is the tight timings with overclocking. The DDR3 was running at 1600MHz.
These three graphs show a very minimal improvement with DDR3. Remember that all tests are timing and that means that lower is better. I will include more tests in the future to show higher differences, but if you look at how the vastly different bandwidth is working in the real world, you see nothing much! We can determine from these results that DDR3 can take over for DDR2, but the timings need to be better. They will soon.
Conclusion:
The Crucial Ballistic PC3-12800 2GB kit retails for a whopping $380. Prices for DDR3 are dropping fairly steadily. The P5E3 that I'm using costs $350 itself. DDR3 is very expensive, but the industry is heading there. I would say wait a month or so and grab these modules when they drop in price. If you absolutely need DDR3, the Crucial Ballistix PC3-12800 should be on the top of your list. I don't envy people that are doing a new build for an Intel computer right now. It is a tough decision to stay with DDR2 or move to DDR3 for future upgradability.
I would like to thank Kelly and Jeremy from Crucial for making this review possible.